ANALISIS INDEKS PENCEMARAN DAN DAYA TAMPUNG BEBAN PENCEMARAN SUNGAI JAING KABUPATEN TABALONG PROVINSI KALIMANTAN SELATAN
Main Article Content
Abstract
Sungai Jaing merupakan salah anak Sungai Tabalong yang memiliki manfaat sebagai sumber air baku PDAM bagi masyarakat Kabupaten Tabalong dan habitat untuk budidaya ikan. Di sisi lain, Sungai Jaing juga menerima beban limbah dari berbagai aktifitas rumah tangga, industri dan pertanian/perkebunan. Hasil pantau Dinas Lingkungan Hidup Kabupaten Tabalong tahun 2018 - 2020, terdapat kecenderungan penurunan kualitas air Sungai Jaing yang disinyalemen karena meningkatnya beban pencemaran air. Pengukuran kualitas air dan debit aliran dilakukan pada Februari 2020 dan Oktober 2020 di segmen hulu, tengah, dan hilir badan Sugai Jaing. Hasil perhitungan indeks pencemaran (IP) pada pengukuran Februari 2020 pada ketiga segmen sungai menunjukkan kondisi cemar sedang dengan IP = 5,732 – 7,300 (6,608±0,58). Parameter yang memberi kontribusi besar pada nilai IP adalah DO, Cu, Sulfida, Fenol, Fe, Zn, Detergen dan BOD. Hasil perhitungan IP pada pengukuran Oktober 2020 memperlihatkan seluruh segmen sungai berada pada kondisi cemar ringan dengan IP = 2,694 – 3,378 (3,106 ±0,36). Parameter yang memberi kontribusi besar pada IP adalah Fosfat, BOD, COD, Fe, Cd, detergent, E.Coli dan Coliform. Cu, Fe, dan Zn adalah parameter logam yang memiliki kecenderungan melampaui daya tampung beban pencemaran air. Parameter DO melampaui daya tampung beban pencemaran air di semua lokasi pengukuran dan BOD pada lokasi pengukuran segmen hilir. Parameter BOD dan COD cenderung menunjukkan penurunan DTBPA pada bagian hulu dan hilir, sedangkan parameter DO terdapat kecenderungan penurunan nilai DTBPA pada segmen tengah. Nilai IP dan DBPA lebih buruk pada periode pengukuran Oktober 2020 dibandingkan hasil pengukuran bulan Februari 2020
The Jaing stream is a tributary of the Tabalong River which has benefits as a source for Clean Water Plant of Local Company (PDAM) Tabalong Regency and a habitat for fish farming. On the other hand, the Jaing River also receives a load of waste from the various household, industrial and agricultural/plantation activities. The results of monitoring the DLH Tabalong in 2018 - 2020, there is a tendency to decrease the water quality, which is caused by the increasing load pollution capacity. Measurement of water quality and the flow rate was carried out in February 2020 and October 2020 include the upstream, middle, and downstream segments of the Sugai Jaing watershed. The results of the pollution index (IP) in February 2020 measurements in the three river segments showed moderately polluted conditions with IP = 5.732 – 7,300 (6.608±0.58). The greatly contributed parameters to the IP value were DO, Cu, Sulfide, Phenol, Fe, Zn, Detergent, and BOD. The results of IP calculations in October 2020 show that all river segments are in a lightly polluted condition with IP = 2.694 – 3.378 (3.106 ± 0.36). The greatly contributed parameters to IP were Phosphate, BOD, COD, Fe, Cd, detergent, E.Coli, and Coliform. Cu, Fe, and Zn are metal parameters that have a tendency to exceed the water pollution load capacity. The DO parameter exceeds the water pollution load capacity at all measurement locations and BOD at the downstream segment measurement locations. The BOD and COD parameters tend to show a decrease in pollution load capacity (PLC) in the upstream and downstream sections, while the DO parameter has a tendency to decrease in the middle segment. The IP and PLC values were worse in the October 2020 measurement period than the February 2020 measurement results
Article Details
References
Angello ZA., Behailu BM., and Tränckner J. 2021. Selection of Optimum Pollution Load Reduction and Water Quality Improvement Approaches Using Scenario Based Water Quality Modeling in Little Akaki River, Ethiopia. Water, 13. 584.
KLHK, 2020. Indeks Kualitas Lingkungan Hidup. Kementerian Lingkungan Hidup dan Kehutanan.
Kusumastuti SW., Bisri BM., Solichin C., Budi DT. 2021. Water quality monitoring and evaluation in Bengawan Solo River region. IOP Conf. Series: Earth and Environmental Science 641. IOP Publishing
Mishra V., Ganguly AR, Nijssen B, and Lettenmaier DP. 2015. Changes in observed climate extremes in global urban areas. Environ. Res. Lett. 10. 024005.
Wang, Y., He, B., Duan, W., Li, W., Lou, P., and Razafindrabe, BHN. 2016. Source Apportionment of Annual Water Pollution Loads in River Basins by Remote-Sensed Land Cover Classification. Water 8, 361.
Wilk P., Orli´nska-Wo´zniak P., and Gebala J. 2018. The river absorption capacity determination as a tool to evaluate state of surface water. Hydrol. Earth Syst. Sci., 22 : 1033–1050.
Xia J., Zhai J.L., and Zhan C.S. 2011. Some reflections on the research and development of water resources in China. Adv. Earth Sci. 26: 905–915.
Zhang R., Qian X., Yuan X., Ye R., Xia B., and Wang Y. 2012. Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management. Int. J. Environ. Res. Public Health. 9:4504-4521.
Zhang H., Jin G., and Yu Y. 2018. Review of river basin water resource management in China. Water 10 : 01-14