DISTRIBUSI KLOROFIL-a PADA MUSIM TIMUR DI PERAIRAN SPERMONDE PROPINSI SULAWESI SELATAN

DISTRIBUTION OF CHLOROPHYLL-a IN THE SEASON OF EAST IN SPERMONDE AQUATIC SOUTH SULAWESI

Abd. Rasyid J¹⁾

¹⁾Program Studi Ilmu Kelautan, Fakultas Ilmu Kelautan dan Perikanan, Universitas Hasanuddin, Jalan Perintis Kemerdekaan Km 10, Makassar 90245 Telp./faks. 0411-586025 HP. 0811445367 e-mail fayufi@yahoo.com

ABSTRAK

Klorofil-a adalah salah satu parameter yang benar-benar menentukan produktivitas primer di laut. Data klorofil-a dari MODIS AQUA / TERRA satelit yang diambil dari LAPAN (Lembaga Penerbangan Antariksa Nasional murah) di Pare-Pare pada setiap minggu sejak bulan Oktober 2007-Juni 2009 (musim timur). Menurut hasil penelitian, didapatkan bahwa kandungan klorofil-a pada musim timur cukup tinggi yaitu 0,15-1,15 mg/m3. Klorofil-a tertinggi konsentrasinya selalu di pulau dan daerah pantai atau pesisir yang merupakan efek pasokan nutrisi yang berasal dari daratan.

Kata kunci: Klorofil-a, musim timur

ABSTRACT

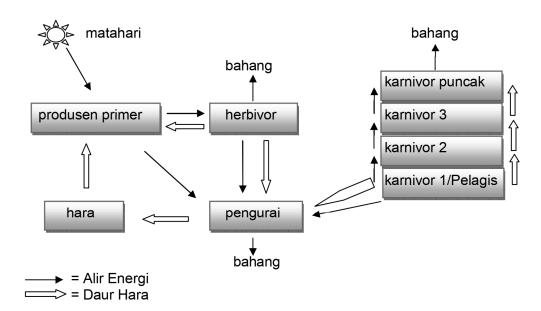
Clorophyl-a is one of Parameter that really determining primary productivity in the sea. Clorophyll-a data from MODIS AQUA/TERRA satellite that take from LAPAN (Lembaga Penerbangan dan Antariksa Nasional) in Pare-Pare about data from each week start from Oktober 2007-June 2009 (east season). According to the research result, we obtained an information that clorophyl-a consentration on season west was high enough were is 0.15 – 1.15 mg/m³. High Clorophyll-a consentration is always near the island and beach area or coastal area due to the effect of nutrient supply that come from continent.

Key words: clorophil-a, east season

PENDAHULUAN

Gugusan pulau-pulau yang terletak di Selat Makassar salah satunya adalah kepulauan Spermonde. Kabupaten Pangkep merupakan salah satu kawasan dari gugusan kepulauan Spermonde, merupakan daerah penangkapan ikan pelagis kecil yang sangat potensial. Keberadaan daerah penangkapan ikan bersifat dinamis, karena secara alamiah ikan pelagis kecil selalu mencari habitat yang lebih sesuai. Habitat tempat ikan pelagis kecil sangat dipengaruhi oleh kondisi oseanografi, diantaranya konsentrasi klorofil, suhu permukaan laut, dan lain sebagainya yang berpengaruh pada dinamika atau pergerakan air laut baik secara horizontal maupun vertikal.

Klorofil merupakan salah satu parameter yang sangat menentukan produktivitas primer di laut. Sebaran dan tinggi rendahnya konsentrasi klorofil sangat terkait dengan kondisi oseanografis suatu perairan, (Mann dan Lazier, 1991).


Produktivitas primer dalam artian umum adalah laju produksi bahan organik (C=karbon) melalui reaksi fotosintesis per satuan volume atau luas suatu perairan tertentu (mg C/m³/hari atau g C/m²/tahun). Reaksi fotosintesis dapat terjadi pada semua tumbuhan yang mengandung pigmen klorofil, dan dengan adanya cahaya matahari.

hal. 105-116
6 CO₂ + 6 H₂O
$$\longrightarrow$$
 (C₆H₁₂O₆) + 6 O₂

Klorofil

Gambar 1. Proses Fotosintesis

Tumbuhan yang berklorofil di laut dapat berupa rumput laut (seaweed). lamun (seagrass), fitoplankton atau mikroflora benthic (benthic microflora). Fitoplankton terdapat pada seluruh laut, mulai dari permukaan sampai pada kedalaman yang dapat ditembus cahaya matahari. Klorofil itu sendiri terdiri dari tiga jenis yaitu klorofil-a, b, dan c. Ketiga jenis klorofil ini sangat penting dalam proses fotosintesis tumbuhan yaitu suatu proses yang merupakan dasar dari pembentukan zat-zat organik di alam. Kandungan klorofil yang paling dominan dimiliki oleh fitoplankton adalah klorofil-a. Oleh karena itulah klorofil-a dapat dijadikan sebagai salah satu indikator kesuburan perairan (Samawi, 2001). Selanjutnya menurut Steemann-Nielsen (1975) dalam Nontji (2008) menytakan bahwa 95 % produktivitas primer di laut disumbangkan oleh fitoplankton.

Gambar 2. Alir Energi (energy flow) dan Daur Hara (nutrient cycle) dalam suatu Ekosistem

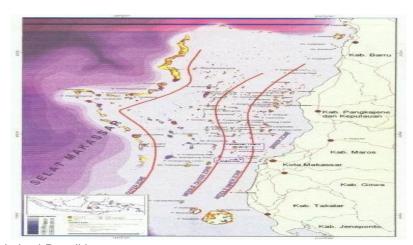
Klorofil memegang posisi kunci dalam reaksi fotosintesis yang menentukan produktivitas suatu perairan. Sehubungan hal tersebut, maka cara pengukuran yang terbaik telah diusahakan sejak dahulu guna menentukan kandungan klorofil fitoplankton di laut.

METODE PENELITIAN

Waktu dan Tempat

Data citra Modis yang digunakan adalah data akuisisi dari bulan Oktober 2007 sampai Juni 2009 (2 tahun) dari satelit MODIS AQUA/TERRA yang diperoleh dari LAPAN (Lembaga Penerbangan dan Antariksa Nasional) Parepare berupa

data mingguan. Pengambilan data lapangan selama 3 (tiga) bulan, yaitu pada bulan April - Juni 2009. Data oseanografi diambil bersamaan dengan kegiatan penangkapan ikan dengan alat tangkap purse seine yang dilakukan pada malam hari. Data tersebut terdiri atas arah dan kecepatan arus, suhu permukaan, salinitas, kandungan klorofil-a, dan kedalaman. Lokasi penelitian pada daerah-daerah merupakan yang sentra atau basis (fishing base) ikan pelagis kecil di Perairan Spermonde, Kabupaten Pangkep.

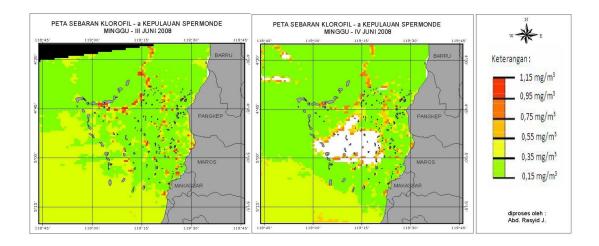

Analisis Data

Data citra tersebut diolah menggunakan software Er-Mapper 7.0 dengan sebuah formula baku dari LAPAN.

HASIL DAN PEMBAHASAN

Gambaran Umum Lokasi

Perairan Kepulauan Spermonde merupakan paparan yang terletak di sebelah luar Sulawesi Selatan, terpisah sepenuhnya dari Paparan Sunda yang terletak diseberang Selat Makassar, terdiri dari banyak pulau-pulau dan *shelf banks*. Kawasan perairan kepulauan ini pada bagian selatan mulai dari Kabupaten Takalar, Kota Makassar, Kabupaten Pangkep, hingga Kabupaten Barru pada bagian utara pantai Barat Sulawesi Selatan (Gambar 3).


Gambar 3. Lokasi Penelitian

Musim Timur

Sebaran klorofil-a bulan Juni 2008 pada kisaran 0.15 – 1.15 mg/m³ dan didominasi pada kisaran 0.15 – 0.75 mg/m³. Konsentrasi klorofil-a pada minggu I berada dalam kisaran 0.15 – 1.15 mg/m³, dan sebagian besar area perairan didominasi oleh

konsentrasi dalam kisaran 0.15 – 0.35 mg/m³. Sedangkan konsentrasi yang lebih tinggi berada dalam area perairan yang sempit dan terakumulasi di perairan dekat pulau dan pantai. Memasuki minggu II, konsentrasi klorofil-a dalam perairan didominasi pada kisaran 0.15 – 0.35 mg/m³ dengan pola ke utara semakin

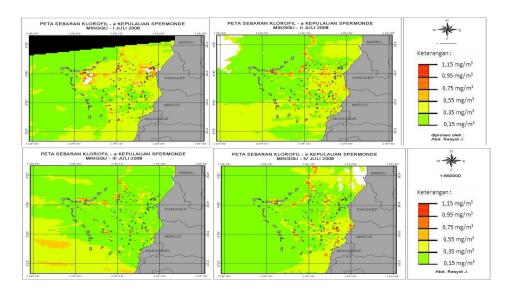
meningkat. Sementara konsentrasi dengan kisaran 0.55 – 0.75 mg/m³ dalam area yang semakin melebar di sekitar pulau-pulau.

Gambar 4. Sebaran Klorofil-a Pada Bulan Juni 2008

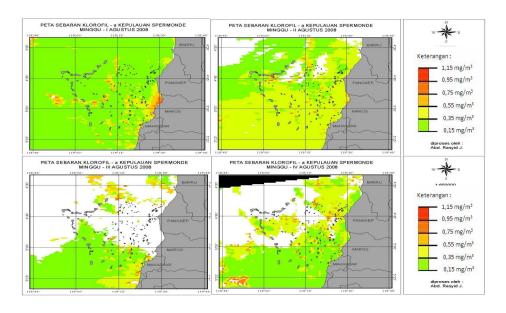
Pada minggu III, konsentrasi klorofil-a dominan dalam kisaran 0.15 $- 0.35 \text{ mg/m}^3$. Di perairan bagian selatan, klorofil-a meningkat dengan kisaran 0.75 1.15 mq/m^3 . Konsentrasi klorofil-a yang lebih tinggi dalam area yang sempit dan tersebar dekat pulau dan pantai. Konsentrasi klorofil-a minggu IV pada menunjukkan pola yang sama pada minggu III, yakni didominasi pada kisaran 0.15 - 0.35 mg/m³ dengan pola kearah pantai semakin menurun. Perairan bagian selatan menunjukkan peningkatan konsentrasi klorofil-a dengan kisaran 0.75 - 1.15 mg/m³. Konsentrasi klorofil-a yang lebih tinggi berada pada perairan sekitar pulau.

Sebaran klorofil-a pada bulan Juli 2008 dengan kisaran 0,15 - 1,15 mg/m³ dan didominasi pada kisaran $0,15 - 0,35 \text{ mg/m}^3$. Konsentrasi klorofil-a pada minggu I berada dalam kisaran $0.15 - 1.15 \text{ mg/m}^3$, dan sebagian perairan besar area didominasi oleh konsentrasi dalam ma/m^3 . kisaran 0.15 0,55 Sedangkan konsentrasi yang lebih tinggi berada dalam area perairan yang sempit dan terakumulasi di perairan sekitar pulau dan pantai.

Memasuki minggu II, konsentrasi klorofil-a dalam perairan didominasi pada kisaran 0,15 – 0,55 mg/m³ dengan pola ke arah pantai semakin meningkat. Sementara konsentrasi dengan kisaran 0,95 -1,15 mg/m³ berada dalam area yang sempit di perairan sekitar pulau pulau. Pada minggu III, konsentrasi klorofil-a dominan dalam kisaran 0,15 -0.35 mg/m^3 . Di perairan bagian selatan, klorofil-a meningkat dengan kisaran 0,35 0,55 mq/m^3 . Sedangkan konsentrasi klorofil-a yang lebih tinggi dalam area yang sempit dan tersebar dekat pulau bagian barat laut. Konsentrasi klorofil-a di minggu IV didominasi pada kisaran 0,15 -0,75 mg/m³ dengan pola ke arah pantai semakin meningkat. Sementara konsentrasi yang lebih tinggi di perairan sekitar pulau.

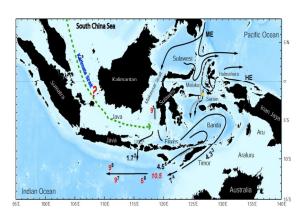

Sebaran klorofil-a pada bulan Agustus 2008 dengan kisaran 0,15 - $1,15 \text{ mg/m}^3$. Konsentrasi klorofil-a pada minggu I hingga minggu IV menunjukkan pola yang relatif sama dimana perairan didominasi pada kisaran $0,15 - 0,55 \text{ mg/m}^3$. Pada minggu I, konsentrasi klorofil-a dalam kisaran 0,75 - 1,15 mg/m³ dalam area yang melebar di perairan sekitar pulau dan pantai. Sedangkan pada minggu II - IV, dijumpai dalam area yang sempit di sekitar pulau.

Berdasarkan variasi sebaran klorofil-a selama musim timur, memperlihatkan klorofil-a dominan pada kisaran dibawah 0,55 mg/m³ dengan pola sebaran yang bervariasi, sedangkan konsentrasi yang lebih tinggi berada dalam area spot kecil di sekitar pulau-pulau dan dangkalan terumbu.


Kecenderungan klorofil-a 0,35 - 0,55 mg/m³ tersebar di dalam perairan Spermonde hingga ke pesisir teridentifikasi dalam beberapa minggu selama musim timur. Akan tetapi pada minggu I, II, dan IV juni, I juli, II, dan IV Agustus, kisaran klorofil-a tersebut dijumpai pada perairan laut lepas di bagian barat dan barat daya, yang cenderung lebih tinggi daripada di perairan Spermonde. Berdasarkan sebaran suhu pada minggu tersebut, juga memperlihatkan suhu yang lebih rendah dibanding di perairan Spermonde. Kondisi tersebut mengindikasikan adanya upwelling yang terjadi di bagian barat daya dan selatan perairan Spermonde. Menguatnya angin timur yang berpengaruh pada pola arus dari selatan (Laut Flores) menyebabkan massa air upwelling bergerak ke utara barat laut. llahude (1978)mengungkapkan bahwa musim timur terjadi penaikan massa air (*upwelling*) di beberapa lokasi di Selat Makassar akibat adanya pertemuan massa air dari Samudera Pasifik dengan massa Laut Jawa dan Laut Flores. air

Ditambahkan pula bahwa, Tingginya kandungan klorofil-a di bagian selatan karena masih adanya pengaruh dari upwelling yang terjadi di perairan Selat Makassar bagian selatan saat musim timur. Upwelling yang terjadi selama musim timur (bulan Juni - Agustus) di bagian selatan Selat Makassar menyebabkan terjadinya pengayaan zat hara pada lapisan permukaan.

Pada munson timur angin akan mendorong massa air keluar dari laut Banda dengan laju yang lebih besar yang dapat diimbangi oleh air permukaan yang berada disekitarnya akibatnya massa air yang berada pada lapisan dalam akan mengisi kekosongan yang terjadi (upwelling) (Nontji, 1987). Proses angin munson tersebut yang menyebabkan terjadi upwelling pada munson timur dimana pada saat *upwelling* suhu permukaan cenderung rendah (Gordon, 2005). Hal tersebut di atas sesuai dengan hasil penelitian Illahude dan Gordon (1996), suhu pada munson timur $25,7^{\circ}C - 26,1^{\circ}C$ dan salinitas $34,1^{\circ}/_{oo}$ - 34,4 % dan pada munson barat 29,6 °C – 30,3 °C dan salinitas 34,5 °/_{oo}.


Gambar 5. Sebaran Klorofil-a Pada Bulan Juli 2008

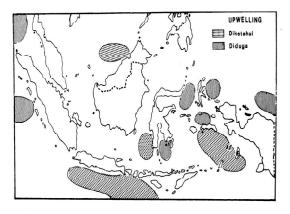
Gambar 6. Sebaran Klorofil-a Pada Bulan Agustus 2008

Hasil vang diperoleh memperlihatkan adanya perbedaan dengan hasil kajian Gordon (2005) dan Halid (2004) yang menunjukkan konsentrasi klorofil-a pada munson lebih timur tinggi dibandingkan munson barat. Perbedaan tersebut dapat dijelaskan dari posisi geografi, dimana penelitian oleh Gordon (2005) dan Halid (2004), lokasi pengamatan dilakukan selatan pada bagian Sulawesi Selatan lebih yang cenderung pada pertemuan aliran massa air dari Laut Flores dan Selat Makassar, dimana pada munson timur terjadi proses upwelling maka zat hara yang tertimbun akan terangkat sehingga menyediakan nutrien untuk fitoplankton dan meningkatkan konsentrasi klorofil-a. Perubahan

konsentrasi klorofil-a berkaitan dengan ketersediaan zat hara yang dibutuhkan oleh fitoplankton. Kandungan zat hara di perairan laut dangkal, diawali dengan proses perombakan di dasar perairan berlangsung terus yang menerus dan akan terangkat kepermukaan melalui proses percampuran pengadukan atau (turbulensi) secara menegak (Birowo, 1982). tersebut Proses yang menyebabkan konsentrasi klorofil-a di perairan kepulauan Spermonde relatif tidak berfluktuatif, kecuali pada perairan yang dekat pantai, namun konsentrasi klorofil-a sebagaimana umumnya perairan tropik relatif rendah.

Gambar 7. Pergerakan volume massa air Arlindo (Sumber : Susanto, 2005)

Perairan Indonesia merupakan perairan penghubung antara Samudera Pasifik dengan Samudera Hindia, dan juga sangat dipengaruhi iklim oleh munson. Hal mengakibatkan sifat yang khas bagi perairan Indonesia. Dengan adanya karakter tersebut, perairan ini memiliki pola sirkulasi massa air yang berbeda dan bervariasi secara musiman serta dipengaruhi oleh massa air Samudera Pasifik melintasi perairan vang Indonesia menuju Samudera Hindia melalui Arus Lintas Indonesia disebut Arlindo (Yusuf, 2005).


Selat Makassar memegang peranan penting karena merupakan pintu gerbang utama lewatnya Arlindo. Secara umum Selat Makassar merupakan jalur lintasan di kawasan lintang rendah yang mentransfer panas, salinitas rendah dari Samudera

Pasifik ke Samudera Hindia. (Sprintall, Gordon, dkk, 2000).

Sirkulasi massa air dan percampuran massa air akan mempengaruhi produktivitas primer perairan. Tingginya produktivitas suatu perairan akan berhubungan dengan daerah asal dimana massa air di peroleh. Nontji Monk dkk. (1997) (1974) dalam mengatakan bahwa rata-rata klorofil-a di konsentrasi perairan Indonesia kira-kira 0,19 mg/m³ dan 0,16 mg/m³ selama Musim Barat, serta 0,21 mg/m³ selama Musim Timur.

Berdasarkan hasil di atas. maka terlihat bahwa konsentrasi klorofil-a pada musim peralihan memiliki konsentrasi klorofil-a yang tinggi. Hal ini terutama didapatkan Tingginya pada daerah pantai. konsentrasi klorofil-a perairan Spermonde khususnya kabupaten Pangkep karena banyaknya aliran sungai yang bermuara di daerah pantai. Suplai nutrient yang berasal dari daratan merupakan faktor utama mengakibatkan tingginya yang konsentrasi klorofil-a tersebut. Nutrien adalah semua unsur dan senjawa yang dibutuhkan oleh tumbuhantumbuhan dan berada dalam bentuk material organik (misalnya amonia,

nitrat) dan anorganik terlarut (asam Hal ini sesuai dengan amino). pendapat Valiela (1984)vang mengatakan bahwa Di Laut, sebaran klorofil lebih tinggi konsentrasinya pada perairan pantai dan pesisir, serta rendah di perairan lepas pantai. Tingginya sebaran konsentrasi klorofildi perairan pantai dan pesisir disebabkan karena adanya suplai nutrien dalam jumlah besar melalui run-off dari daratan, sedangkan rendahnya konsentrasi klorofil perairan lepas pantai karena tidak adanya suplai nutrien dari daratan secara langsung.

Gambar 8. Lokasi proses *up-welling* di perairan Indonesia

Selain faktor nutrient, maka faktor lain yang kemungkinan mengakibatkan tingginya konsentrasi klorofil-a pada musim peralihan adalah faktor pencahayaan. Cahaya merupakan salah satu faktor yang menentukan distribusi klorofil-a di laut.

Di laut lepas, pada lapisan permukaan tercampur tersedia cukup banyak cahaya matahari untuk proses fotosintesa, Simon (2001).

Selain konsentrasi klorofil-a yang tinggi pada daerah pantai, maka perairan lepas pantai juga ditemukan daerah yang memiliki konsentrasi klorofil-a yang cukup tinggi, walaupun pada umumnya di daerah tersebut memiliki konsentrasi klorofil-a yang rendah akibat tidak adanya suplai nutrient yang berasal dari daratan.

Tingginya konsentrasi klorofil-a pada perairan lepas pantai akibat tingginya konsentrasi nutrient yang dihasilkan melalui proses fisik massa air, dimana massa air dalam terangkat bersama-sama dengan nutrient ke lapisan permukaan dan hal ini disebut dengan proses *up-welling*

Tingginya produktivitas di laut terbuka yang mengalami upwelling disebabkan adanya karena pengkayaan nutrien pada lapisan permukaan tercampur yang dihasilkan melalui proses pengangkatan massa air dalam. Seperti dikemukakan oleh yang Cullen et al. (1992)bahwa konsentrasi klorofil-a dan laiu primer meningkat di produktivitas sekitar ekuator, dimana terjadi aliran nutrien secara vertikal akibat adanya upwelling di daerah divergensi ekuator.

Beberapa daerah-daerah perairan Indonesia yang mengalami upwelling akibat pengaruh pola angin muson adalah Laut Banda, dan Laut Arafura (Wyrtki, 1961 dan Schalk, 1987), Selatan Jawa dan Bali (Hendiarti dkk, 1995 dan Bakti, 1998), dan Laut Timor (Tubalawony, 2000).

KESIMPULAN

Berdasarkan hasil penelitian tersebut, diperoleh informasi bahwa konsentrasi klorofil-a pada musim timur berada pada kisaran yang cukup tinggi yaitu 0.15 – 1.15 mg/m³.

Konsentrasi klorofil-a yang tinggi cenderung selalu berada di daerah pulau, pantai atau pesisir akibat suplai nutrient yang berasal dari daratan.

DAFTAR PUSTAKA

- Bakti, M. Y., 1998. Dinamika Perairan di Selatan Jawa Timur Bali pada Musim Timur 1990. *Tesis*. Institut Pertanian Bogor.
- Birowo, S. 1982. Hydro Oceanography Condition of The Sunda Strait: A. Review. Proceding of Symposium on 100th Year Development of Krakatau and its Souronding. LIPI. Jakarta.
- Cullen, J. J., M. R. Lewis, C. O. Davis, and R. T. Barber, 1992. Photosynthetic Characteristics and Estimated Growth Rates Incate Grazing is the Proximate Control of Primary Production in the Equatorial Pacific. *J. Geophys. Res.*, 97 (C1): 639 654.
- Gordon A. L. 2005. Oceanography Of The Indonesian Seas and Their Throughflow. Journal Oceanography. Volume 10. Nomor 4. Hal 14 27.
- Halid. I. 2004. Analisis Spasial dan Temporal Daerah Potensi Penangkapan Ikan di Perairan Selat Makassar. Thesis. IPB. Bogor.
- Hendiarti, N., S. I. Sachoemar, A. Alkatiri, dan B. Winarno, 1995. Pendugaan Lokasi Upwelling di Perairan Selatan P. Jawa Bali Berdasarkan Tinjauan Parameter Fisika Oceanografi dan Konsentrasi Klorofil-a. Prosiding Seminar Kelautan Nasional 1995. Panitia Pengembangan Riset dan Teknologi Kelautan serta Industri Maritim, Jakarta.
- Illahude, A.G. 1999. Pengantar Oseonologi Fisika. PT. Rapihbudi Mulia. Jakarta. 240 Hal.

- Mann, K.H. and J.R.N. Lazier. 1991. Dynamic of Marine Ecosystem, Biological-Physical Interaction in the Ocean. Blackwell Scientific Publications. Boston.
- Monk, K. A., Y. de Fretes, and G. Reksodiharjo-Lilley, 1997. The Ecology of Nusa Tenggara and Maluku. The Ecology of Indonesia Series. Vol. V. Periplus Editions.
- Nontji, A. 1987. Laut Nusantara. Penerbit Djambatan, Jakarta. 367 Hal.
- Nontji, A. 2008. Plankton Laut. Lembaga Ilmu Pengetahuan Indonesia (LIPI) Press. Jakarta. 331 hal.
- Samawi, M.F., 2001 *Penuntun Praktikum Kimia Oseanografi*. Laboratorium Oseanografi Kimia. Jurusan Ilmu Kelautan Universitas Hasanuddin. Makassar
- Schalk, P. H., 1987. Monsoon Related Changes in Zooplankton Biomass in the Eastern Banda Sea and Aru Basin. *Biol. Oceanogr.*, 5: 1 12.
- Sprintall, J., A.L. Gordon, R. Murtugudde, and R.D. Susanto. 2000. A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997, *Journal of Geophysical Research*, 105 (C7), 17217-17230.
- Susanto, R.D. and A. L. Gordon. 2005. Velocity and transport of the Makassar Strait Throughflow. *Journal of Geophysical Research* 110, Jan C01005, doi:10.1029/2004JC002425
- Tubalawony, S., 2000. Karakteristik Fisik-Kimia dan Klorofil-a Laut Timor. *Tesis*. Institut Pertanian Bogor.
- Tubalawony, S. 2001. Pengaruh Faktor-Faktor Oseanografi Terhadap Produktivitas Primer Perairan Indonesia. Institut Pertanian Bogor. Bogor
- Valiela, I. 1984. Marine Ecological Processes. Springer-Verlag. New York. USA.
- Wyrtki, K., 1961, Physical oceanography of the Southeast Asian waters, Naga Report Vol. 2. 195p.
- Yusuf, 2007. Dinamika Massa Air di Perairan Selat Makassar pada Bulan Juli 2005. Program Studi Ilmu Kelautan. Fakultas Perikanan dan Ilmu Kelautan. Universitas Padjadjaran. Tidak dipublikasikan.